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1. INTRODUCTION

If L is a linear lattice and E is a linear subspace of L, it is natural to ask
whether there is a positive projection of L onto E (a projection P is positive,
or monotone. if x ~ 0 implies Px ~ 0). This is always the case, for example.
when L is LP(P) and E is a closed linear sublattice [4, Chap. 3]. However,
much less is known about the situation when L is the function space C(X)
(X compact, Hausdorff) with supremum norm, though for certain subspaces
Korovkin's theorem implies that there is no positive projection.

In Section 2, we give necessary and sufficient conditions for there to be a
positive projection of a normed linear lattice L onto an n-dimensional
subspace Ln' As a corollary, we see that if M is a closed sublattice of a
Banach lattice L and there is a positive projection of M onto L n , then there
is a positive projection of L onto Ln' In particular. every finite-dimensional
sublattice of L admits a positive projection. When L is C(X), our charac­
terization reduces to the following: L n admits a positive projection if and
only if there exist positive functions b l ..... bn in L n and points Xl ••••• X n of X
such that btCxj ) = Oi}'

In Section 3, we study the companion problem for finite-codimensional
subspaces of C(X). We prove, in fact, that if X has no isolated points. then
such subspaces never admit positive projections.
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In Section 4, we are concerned with projections of C(X X Y) onto certain
natural subspaces. Here we consider minimal as well as positive projections.
More precisely, let M be the subspace consisting of all functions of the form
¢(x,y) =f(x) +g(y). Also, for fixed x* EX, y* E Y, let Co(X X Y) be the
set of functions in C(X X Y) that vanish at (x *, y *), and let
M o= M n Co(X X Y). Then there exists no positive projection of C(X X Y)
onto M, and exactly one positive projection p* of Co(X X Y) onto Mo.
Furthermore, if X and Yare infinite, then for any projection P of C(X X Y)
onto M, IIPII ~ 3, while for any projection P of Co(X X Y) onto M o'
IIPII ~ IIP* II = 2. These results easily generalize to the product of k spaces
XI. Also, the method of proof establishes exact estimates (in the first case)
for the norms when some or all of the spaces Xl are finite.

2. FINITE-DIMENSIONAL SUBSPACES

Our first result applies to general normed linear lattices. A linear lattice
(or Riesz space) is a linear space (over the real field) with a lattice ordering
~ such that

x ~ 0, y ~ 0 implies x +y ~ 0,

x ~ 0, AE IR + implies Ax ~ O.

We use the usual notation: sup{x,y}=xVy, inf{x,y}=xl\y,
Ixl = x V (-x). A normed linear lattice is a normed linear space equipped
with a lattice ordering such that Ixl ~ Iyl implies Ilxll ~ II yll. If the space is
also complete with respect to the norm, it is called a Banach lattice.

Let L n denote an n-dimensional linear subspace of a normed linear lattice
L. Suppose that there is a positive projection P of L onto Ln' It is then
elementary (and well-known) that the ordering of L n is a lattice ordering: in
fact, we have

SUPL.(X,y) = P(x V y)

for x,y E Ln' (This does not mean that L n is a sublattice of L since x V y
need not belong to L n)' The positive cone in L n is closed, hence
Archimedean. By a standard result on finite-dimensional linear lattices [4,
p. 70j, L n has a basis {b I ,... , bn} such that L:7 Alb l ~ 0 if and only if AI ~ 0
for all i. We deduce the following characterization of finite-dimensional
subspaces that admit positive projections:

THEOREM 1. Let L n be an n-dimensional subspace of a normed linear
lattice L. Then the following statements are equivalent:
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(i) there is a positive projection of L onto L n'

(ii) there exist positive elements bi of L n and positive linear
functionals h on L (i = 1,..., n) such that h(bj ) = (jij'

Proof If (ii) holds, then a positive projection P is simply given by

Px = I:~h(x) bi'
Conversely, suppose that there is a positive projection P. Then L n has a

basis {bl''''' bnl as above. For x = I:~ Aibi E L n, let glx) = Ai' The gi are
positive linear functionals defined on L n, and gi(bj ) = (jij' The required
functionals on L are given by h = gi 0 P. I

COROLLARY. Let L be a Banach lattice, M a closed linear sublattice. Let
L n be an n-dimensional subspace of M. If there is a positive projection of M
onto L n' then there is a positive projection of L onto Ln'

Proof Theorem 1 gives us positive linear functionals h defined on M. It
is well-known that every positive functional on a Banach lattice is
continuous ([4, p. 84]; if there were positive elements x k wit1:J.llxk ll ~ 2- k and
f(xd ~ k, then no definition would be possible for f(I: x k )). Further, every
continuous positive functional defined on M has a positive extension defined
on L [4, p. 86]. I

In particular, every finite-dimensional linear sublattice admits a positive
projection. As we shall see, this is far from being the case for infinite­
dimensional sublattices of C(X), though it is true in U(;.l), 1~p < 00 [4,
p.212].

Remark. It is sufficient in Theorem 1 if L, instead of having a lattice
ordering, has an Archimedean ordering satisfying the Riesz decomposition
property, that is, if xl' x2~ 0 and 0 ~Y ~ XI +x 2' then Y = YI +Y2' where
o~ Yi ~ xi' i = 1,2. Finite-dimensional spaces with this property are order­
isomorphic to IR n with the usual order.

The next result shows that in the case L = C(X), we can take the
functionals in Theorem 1 to be point-evaluations.

THEOREM 2. Let X be a compact, Hausdorff space and let L n be an n­
dimensional subspace of C(X). Then the following statements are equivalent:

(i) there is a positive projection of C(X) (or of a closed linear
sublattice of C(X)) onto L n,

(ii) there exist non-negative fuctions b l , ... , bn in L n and points XI'"'' x n
in X such that bi(xj ) = oij'

Proof Let the functionalsli be as in Theorem 1, and let S(Ii) denote the
support ofh. For j ~ 2, we havefl(bj) = 0, hence bj(x) = 0 for all X in S(fl)'
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Since f,(b,) = 1, there exists x, in SUI) with b,(x,) >O. Replace b, by a
positive scalar multiple to obtain b,(x,) = 1. The points x 2 , ... , xn are found
similarly. I

Remarks. (I) In the same way, one sees that if for a certain set of non­
negative functions b"..., bn in L n, there exist unique points Xj such that
bj(xj) >0 and bj(xj ) = 0 for j,* i, then there is a unique positive projection
onto Ln'

(2) For any positive linear mapping T of C(X) into itself, we have
II Til = II Tell, where e is the function with constant value 1. Hence if P is a
positive projection onto a subspace containing e, then IIPII = 1 (and if e is in
the subspace, IIPII = 1 implies P is positive). For the positive projection
Pu = L.~ u(x j) bj given by Theorem 2, we have IIPII = lib, + ... +bnll. If the
subspace does not contain e, this may well be greater than 1, even when a
non-positive projection of norm I exists. To obtain a simple example, let X
be a 3-point set, so that C(X) is 1R 3

• Let L 2 be the subspace consisting of
elements (x, y, z) satisfying x = y + 2z. Then there is an unique positive
projection given by P(x, y, z) = (y + 2z, Y, z). (This corresponds to
b, = (1,1,0), b2 = (2,0, I).) Clearly, IIPII = 3. However, there is a non­
positive projection with norm 1, namely, Q(x,Y, z) = (x,Y, (x - y)j2).

On the other hand, if the subspace does contain e, then the problem of
finding the minimal norm projection is equivalent, in a certain sense, to that
of finding the "least negative" projection. By this we mean the following. It
is easy to show that for f?J: 0,

1. 1m mm(Pf)(x)?J: 2" (1 -IIPII),

and equality is attained when we take the infimum over all f?J: O.
It was shown by Morris and Cheney [2, Theorem 9] that if n?J: 3 and L n

is an n-dimensional Chebyshev subspace of CIa, b] containing the constant
functions, then every projection onto L n has norm greater than 1. Conse­
quently there is no positive projection onto Ln' Using our Theorem 2, we can
prove the following stronger statement.

COROLLARY. Let L n be an n-dimensional subspace of C[a, b]. Assume
that L n contains an m-dimensional ChebysHev subspace X m , where m?J: 3.
Then there is no positive projection onto Ln.

Proof, Since X m is a Chebyshev subspace, for each X o in (a, b) there
exists anfo in X m such thatfo?J: 0 on [a, b] andfo(x) = 0 only for x = xo'

Assume that there is a positive projection of C[a, b] onto Ln' Let b, ,..., bn
and x, ,..., xn be as in the statement of Theorem 2. Choose Xo in
(a"b)\{x" ...,xn}, and letfo be as above. Expressfo in the form L.~A.jbj'
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Since lo(xi ) >0, we have Ai >0 for i = 1,..., n. However, lo(xo) = 0, so
bi(xO) = 0 for each i. This holds for all Xo as above, which implies that each
bi is identically zero, a contradiction. I

Actually, an even stronger statement is true. We say that a subspace E of
C(X) has the "Korovkin property" if the identity is the only positive
operator of C(X) into itself that agrees with the identity on E. (This differs
slightly from the usual definition, which refers to a sequence of positive
operators.) The Korovkin property implies, of course, that there is no
positive projection onto E.

In the situation of the above corollary, X m (and hence L n) has the
Korovkin property. For I in C[a, b] and each x, set

J(x) = inf{ g(x): g E X m , g ~/},

[(x) = sup{ g(x): g E X m , g ~f}.

It is easily proved that if X m is an m-dimensional Chebyshev subspace, with
m ~ 3, then J(x) =f(x) =/(x) for each x in (a, b). Let T be any positive
operator of C [a, b] -into itself which is the identity on Xm' and take any I in
C[a, b]. Then it follows from the above equalities that (Tf)(x) =/(x) for all
x in (a, b), and hence that TI= I (cf. Berens and Lorentz [1] and Saskin
[3 ]).

While the Korovkin property implies the non-existence of a positive
projection, the converse is certainly not true. For example, if E has the
Korovkin property, then so has any subspace containing E. No such
inclusion property holds for the existence or non-existence of positive
projections. Two specific examples will be given after Proposition 3.

When L n is considered as a subspace of LP [a, b], .a statement similar to
the above corollary holds even for m = 2. In fact, we have as a corollary of
Theorem 1:

COROLLARY. Let L n be an n-dimensional subspace 01 C[a, b]. Assume
that L n contains an m-dimensional Chebyshev subspace X m , where m ~ 2.
Then there is no positive projection 01 LP[a, b] onto L n (where 1~p < (0).

Proof. By the previous corollary, we need only consider the case m = 2.
Since X 2 is a Chebyshev subspace, there exist g in X 2 such that g(a) = 0 and
g(x) > 0 for a < x ~ b, and h in X 2 such that h(a) > O. Let b"..., bn and
II ,..·,fn be as in the statement of Theorem 1. Then g can be expressed as
L.~ Pi b/, with each Pi ~ O. Since g - eh takes negative values for each e > 0,
we must have Pk = 0 for some k. It follows that Ik(g) = O. But this is
impossible, since Ik is a non-zero, non-negative element of LP' [a, bI and g is
a non-negative, continuous function that vanishes only at a. I
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Let 7Cn denote the space of algebraic polynomials of degree ::;,;;n. It follows
from the elementary form of Korovkin's theorem (or from the above) that
there is no positive projection of C[a, b] onto 7Cn for n ~ 2. We give here a
simple direct proof of a slightly stronger statement, together with a variant
which is not obtainable from Korovkin-type theorems. Let Cola, b] denote
the set of functions in C[a, b] that are °at a, and let 7C~ = 7Cnn Cola, b].

PROPOSITION 3. (i) If n ~ 2, then there is no positive projection of 7Cn+ 1

onto 7Cn.

(ii) If n ~ 3, then there is no positive projection of 7C~+ I onto 7C~.

Proof It is sufficient to consider [a, b] = [0, 1]. Write rk(x) = x k. For
both (i) and (ii), suppose that there is a positive projection P, and let
P(rn+I)=u. Now O::;';;rn+l::;';;rn, so 0::;';; u::;';;rn. It is elementary that this,
together with the fact that u is in 7Cn , implies that u = arn for some a in
[0,1]. Now xn+l~nx2_(n-l)x for x in [0,1]. Hence
u(x)~nx2-(n-l)x. In particular, u(I)~ 1, so a~ 1.

For (i), let

Then hk is in 7C2, and for a suitable k we have hk~ rn+I (hk is a "narrow"
quadratic having twice the value of rn +I at ~). Hence hk ~ u. Evaluation at ~

gives a ::;,;; !, a contradiction.
For (ii), modify this slightly, as follows. Let

Choose k such that x n ::;,;; gk(X), so that x n+I::;,;; xgk(x). The function xgk(x) is
in 7C~, so we obtain axn ::;,;; xgk(x). This gives a::;';; L as before. I

Remarks. (1) There is a positive projection of C[O, 1] onto 7C1' and in
fact onto any two-dimensional subspace containing the constant functions.
For iff is a non-constant function, then we can definefl = af+Psuch that°::;';;fl ::;,;; 1 and fl attains the values 0, 1. Then fl and 1 - fl satisfy the
conditions of Theorem 2. The positive projection onto 7C I is unique.

(2) The subspace 7C~ does not have the Korovkin property in C[O, 11.
This is shown by the mapping (Tf)(x) =f(x) +f(O).

An additional example, containing the constant functions, is as follows.
Let L 3 denote the subspace of C[-1, 1] spanned by the functions 1, x 2

, x 4
•

The mapping (Tf)(x) = !f(x) + !f(-x) shows that L 3 does not have the
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Korovkin property. By an application of Theorem 2 (and zero counting), or
by the method of Proposition 3, it is easily seen that there is no positive
projection onto L 3 •

EXAMPLE. The subspace n~, consisting of polynomials of the form
ax + bxz, displays several interesting features. Note first that ax + bxz

~°
on [0, 11 if and only if a, a + b~ 0. Consequently, n~ has a basis {b .. bz}
such that AI bl + Azbz~°if and only if AI ~°and Az~ 0: let bl(x) = x - xl,
bz(x) = xZ. We prove that there is no positive projection of qo, 1] onto n~,

showing that the existence of such a basis is not in itself sufficient. Let gI' gz
be the positive functionals on n~ such that g/(bj ) = Oij' We show that there is
no positive extension of gl defined on qo, 1] (or even on nz); this implies
the non-existence of a positive projection. Suppose, in fact, thatfl were such
an extension, and let a > 0. Since

we have

°~ -2a +aZfl(e),

so fl (e) ~ 2/a for all a >0, which is impossible.
Since cola, 1] is a sublattice of qo, 1], it follows from the corollary of

Theorem 1 that there is no positive projection of cola, 1] onto n~. However,
it is not hard to show that for each n ~ 3, there is a unique positive
projection Pnof n~ onto n~: if f(x)=alx+ ... +anxn, then (Pnf)(x)=
alx + (a z + ... + an) xZ. By considering fn(x) = 1 - (1 - xy, one sees that
IIPnll-+ 00 as n--+ 00.

3. FINITE-CODIMENSIONAL SUBSPACES OF C(X)

In this section, we prove:

THEOREM 4. Let X be a compact, Hausdorff space with no isolated
points. Then there is no positive projection of C(X) onto any proper, finite­
codimensional subspace.

The proof will be achieved by a series of lemmas. Suppose that P is such a
projection, and let E be its (finite-dimensional) kernel. We shall work with E
rather the range of P. Note first that if fE E and °~ g ~f, then Pg = 0, so
gEE (that is, E is "order-convex"). We deduce:

LEMMA 1. E contains no non-zero, non-negative function.
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Proof Suppose that E contains a non-zero, non-negative functionf We
may assume that/~ I on some open set G. Since X has no isolated points,
G is infinite. Let (xn) be a sequence of distinct points in G. For each n, there
is a functionln in C(X) such that 0 <.In <. l,fn(xn) = l,fn(xt) = 0 for i <n
and/n(x) = 0 for all x in X\G. Then 0 <.In <.f, sofn E E, and it is clear that
the sequence (fn) is linearly independent, contradicting the fact that E is
finite-dimensional. I

LEMMA 2. Let E l = {IE E: IIIII = I}, and for f in C(X), let
i(f) = inf{f(x): x E X}. Then there exists c> 0 such that i(f) <. -c for all
fEEl·

Proof This is clear, since i is continuous, E 1 is compact and, by
Lemma I, i(f) < 0 for fE E 1 • I

LEMMA 3. There exist x!'... , x k in X such that iffE E andf(xJ ~ ofor
each i, then f = o.

Proof Let c be as in Lemma 2. Since E 1 is a compact subset of C(X), it
is equicontinuous. Therefore for each x in X, there is a neighbourhood U(x)
such that if y E U(x), then Ifly) - f(x)1 <. cl2 for all f in E l • The space X
can be covered by a finite choice of such neighbourhoods, say
U(x l ),••• , U(xk ). Iffis in EI' thenf(x) <. -c for some x, sof(xt) <. -c12 for
some i. I

LEMMA 4. Write Q = I - P. Iff is in C(X) and f(x j ) = 0 for all i, then
Qf=O.

Proof It is sufficient to prove this for non-negative I (then consider f +

and f -). Suppose thatf~ 0 and f (xJ=0 for each i. Then Pf=I - Qf~ 0,
so (Qf)(x j ) <. 0 for all i. Since Qf is in E, Lemma 3 gives Qf= O. I

Proof of Theorem 4. Choose some f~ 0 with Qf*" O. By Lemma I, Qf
has both positive and negative values. Hence (Qf)(y) >0 for some y
different from x!'..., x k • Let h be a non-negative function taking the value I
at each x j and 0 at y. Let g =ft. Then g(xJ =f(x t) for all i, so by Lemma 4,
Qg = Qf. In particular, (Qg)(y) > O. But g(y) = 0, so (Pg)(y) < O. This
contradicts the positivity of P since g ~ O. I

Remarks. (1)' Let A be a closed, proper subset of X and let C(X, A)
denote the set of functions in C(X) that vanish on A. The same reasoning
shows that there is no positive projection of C(X, A) onto any proper, finite­
codimensional subspace of itself. It is well-known that every closed, order­
convex linear sublattice (i.e., closed lattice ideal) of C(X) is of the form
C(X,A).
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(2) Let C(X, xo) denote the set of functions in C(X) that vanish at Xo'
If Xo is not an isolated point (whether or not other isolated points exist), then
there is no positive projection of C(X) onto C(X, xo)' This follows easily
from the fact that any projection onto C(X, xo) has the form Pf= f - f(xo) g,
where g is a function with g(xo) = 1.

4. CERTAIN SUBSPACES OF C(X X Y)

We start with an elementary result.

PROPOSITION 5. Let X be a compact, Hausdorff space and Y any
topological space. Let L n be an n-dimensional subspace of C(X) spanned by
fl' ... ,fn' Let B i (i = 1,... , n) be subspaces of C(Y), each containing the
constant functions. Let An be the set offunctions of the form L7.t;(x) gi(Y)'
where gi E B i for each i. If there is no positive projection of C(X) onto L n,
then there is no positive projection of C(X X Y) onto An.

Proof Choose any y* E Y, and let (Q~)(x) = ~(x,y*) for ~ in C(X X Y).
If P were a positive projection of C(X X Y) onto An' then QP IC(Xl would be
a positive projection of C(X) onto Ln' I

A natural application of this is the extension of Proposition 3 to
polynomials in two or more variables. For x,y E] = [0, 1], set

12.: aijxi/: i +j ~ n I,

n~,m = 12.: aijxi/: i ~ n,j ~ m (.

Then for n ~ 2, there is no positive projection of C(]2) onto n~ or n~,m' (In
fact, examination of the proofs of Propositions 3 and 5 shows easily that
there is no positive projection of n~+l onto n~, or of n~+l,m onto n~.m')
There is a unique positive projection of CW) onto ni,l' given by inter­
polation at the corners of ]2. It follows from Theorem 2 that there is no
positive projection of CW) onto ni. The method of proof of Theorem 6
actually shows that there is no positive projection of nL onto ni·

Let X, Y be compact, Hausdorff spaces neither containing only one point.
Let M be the subspace of C(X X Y) consisting of functions of the form
~(x,y)=f(x)+g(y). Also, for a chosen x*EX, y*E Y, let Co(XX Y)
denote the set of functions in C(X X Y) which vanish at (x *, y *), and let
M o = M n Co(X X Y). We shall consider both positive and minimal
projections of C(X X Y) onto M, and of Co(X X Y) onto Mo. Our first result
totally characterizes the positive projections.
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THEOREM 6. There is no positive projection of C(x X Y) onto M. There
is exactly one positive projection p* of Co(X X Y) onto M o, given by
(P*l6)(x,y) = l6(x,y*) + l6(x*,y).

Proof Suppose that P is a positive projection of C(X X Y) onto M. Let
fE C(X), g E C(Y) be arbitrary functions such that 0 ~f, g ~ 1, and for
which there exist points x O' XI E X and yo'YI E Y satisfying
f(xo)=g(yo)=O, !(xl)=g(YI) = 1. Set u(x,y)=!(x)g(y), and let
(Pu)(x,y) = h(x) +k(y), with h(xo)=O. Then (Pu)(xo,y)=k(y)~O for all
yin Y. Now,f(x) ~ u(x,y), sof(x) ~ h(x) + k(y) for all x,y. Taking x = x O'

we see that k = O. It follows by similar reasoning that h = O. By
construction, [1-f(x)J[1-g(y)1~O. Application of P gives
I-f(x)-g(y)~O for all x,y. Set X=X I and y=YI to obtain a con­
tradiction.

Obviously p* is a positive projection of Co(X X Y) onto Mo. Let P be any
positive projection of Co(X X Y) onto Mo. For l6 E Co(X X Y), define
li'(x,y) = l6(x,y) - l6(x,y*) - ~(x*,y). The result follows if we prove that
Pli' = O. Now, li' enjoys the property that li'(x, y*) = li'(x*, y) = 0 for all x, y.
Set (Pli')(x,y) = h(x) +k(y), where h(x*) = k(y*) = O. Define
li'+(x) = max{li'(x,y):y E Y}, and li'-(x) = min{li'(x,y):y E Y}. Thus
li'+(x)~li'(x,Y)~li'-(x) for all x,y. Since li'+,li'-EMo, it follows that
O=li'+(x*)~h(x*)+k(y)~li'-(x*)=O for all yEY. Thus k=O.
Similarly h = O. This proves the theorem. I

Remark. The first part of the proof also shows that there is no positive
projection of C(X X Y) onto Mo. This is interesting in the light of the results
of Sections 2 and 3.

For any (x*,y*)EXX Y the map defined by (Pl6)(x,y)=!6(x,y*)+
!6(x*,y) - l6(x*,y*) is a projection of C(X X Y) onto M of norm 3. We
prove that this is minimal if both X and Y contain an infinite number of
points.

THEOREM 7. Let X and Y be infinite, compact, Hausdorff spaces. Let P
be any projection of C(X X Y) onto M. Then IIPII ~ 3.

Proof Let {x/}i~1 and {ytli~1 be any two sets of n distinct points in X
and Y, respectively. Let~ E C(X), i = 1,..., n, satisfy

f/(xj ) =ou'

~(x)~O,

n

L~(x)= 1,
/~I

i,j = 1,..., n,

i= 1,... ,n, xEX,

xEX.

Similarly define g/ E C(Y), i = 1,..., n, with respect to the points {y/} i~ I'



192 JAMESON AND PINKUS

Set ~rs(x,y) =fr(x)gs(Y), r, S = 1,..., n. It easily follows that

~rs(Xi'yJ = JriJsj ' r, s, i,j = 1,... , n, (1)

n

Y fS(x, y) = gs(Y), s = 1,...,n, (2)
r~ I

n

2: ~rs(x,y) =fr(x), r= 1,... , n. (3)
s~1

Now, set (Nrs)(xi,Yj) = a~J.

From (1), (2), and (3), we obtain

n
'\' rs J s, i,j = 1,..., n, (4 )"- au = sj'
r~1

n
\~ rs fJ r, i,j = 1,..., n. (5)~ au = ri'
s~1

Furthermore, since P is a projection onto M, and functions in M satisfy

~(zo' wo) + ~(z I' WI) = ~(zo, WI) + ~(z I' wo), we have

r, s, i,j = 1,..., n. (6)

By (6),

n n

'\' a:J = L [ag +a~ - aYI]'
i,j= I i,j= I

and applying (4) and (5) we obtain

n

2.: a~~= 2n-1.
i.j= I

We show that a:) ~ (3 -IIPII)/2 for each i,j. It then follows that

or IIPII ~ 3 - (4n - 2)/n 2
• This is true for all n, so IIPII ~ 3.

Consider i,j = 1 (a similar proof holds for each choice of i,f). Since
o~ (1 - fl(x))(l- gl(Y)) ~ 1, we have



POSITIVE AND MINIMAL PROJECTIONS

for all x E X, Y E Y. Applying P and evaluating at x = Xl' Y = Yl' gives

193

from which 1-3 + 2agl ~ IIPII. Thus a:: ~ (3 -IIPII)/2. I
Remark. If X contains exactly n points and Y contains exactly m points,

then the above argument shows that for any projection P of C(X X Y) onto
M, IIPII ~ 3 - (2n + 2m - 2)/nm. This lower bound is in fact attained by the
choice

a~J = - l/nm, rof:- i, sof:-j,

= (n - l)/nm, r= i, sof:-j,

= (m - l)/nm, rof:- i, s=j,

= (n +m - 1)/nm, r= i, s=j,

where the {a~J}~.i=l~j=1 are understood to be defined as in the proof of
Theorem 7.

The projection P* of Co(X X Y) onto Mo as given in Theorem 6 is of
norm 2. Our next result, which is a variant of Theorem 7, shows that this is
minimal.

THEOREM 8. Let X and Y be infinite, compact, Hausdorff spaces. Let P
be any projection of Co(X X Y) onto Mo. Then IIPII ~ 2.

Proof As in the proof of Theorem 7, let {Xdl=l and {Ydi'=l be any two
sets of n distinct points (n ~ 2) in X and Y, respectively, with XI = x* and
YI =y*. Let {/;li'=l and {gdi'=l be as in the proof of Theorem 7, and set
~rs(x,Y)=fr(x)gs(Y) for r,s=l,...,n; (r,s)of:-(l.l). For notational
convenience, set ~ll = O. Thus ~rs E Co(X X Y) for all r, s = 1,..., n. Now

n

2: ~rs(x,y)=gs(Y)'
r=1

n

2: ~rs(x,y) =fr(x),
s=l

r,s,i,j= 1,...,n, (r,s)of:-(l,l),

s = 2,..., n,

r= 2,..., n.

(7)

(8)

(9)

Set (Nrs)(xi,Yj) = a~J. Since P maps Co(X X Y) onto Mo, a~~ = 0,
r, s = 1,... , n. From the definition of a'J, we have

a~J = a~f + a~j, at} = 0, a~~ = 0, r, s, i,j = 1,..., n, (10)
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and from (7), (8) and (9),

JAMESON AND PINKUS

By (10), (11) and (12),

n

L a~J = (jsJ'
r= 1

n

L a~J=(jri'
s=1

s= 2,... , n,

r= 2,..., n.

(11 )

(12)

n n

L ai}= L [aj~ +aVJ]
i,J= 1 i,j= 1

n n n n

= '\' )"' aiJ + '\' Y' a iJ ,
L.... ~ il ~ "- I]
i=2J=1 J=2i=1

= 2(n - 1).

We show that a:) ~ 2 - \I P II, for i,j = 1,..., n, (i,j) =t= (1, 1). It then follows
that

n

2(n-l)= L ai}~(n2-1)(2-\\P\1)
i.J=1

or IIPII ~ 2 - 2/(n + 1). This is true for all n, so IIPII ~ 2.
We divide the proof of this claim into two cases. First assume that i,j > 1.

For convenience, consider i =j = n. Since 0 :r;;.ln, gn:r;;. 1,

Because/n +gn - In gn E Co(X X Y), we can apply P and evaluate at x = X n,
Y = Yn to obtain

12 - a~~1 :r;;.IIPII·

So a~~ ~ 2 -IIPI!.
Now assume that either i or j, but not both, is equal to 1. For convenience

set i = 1, j = n. The function gn - (1 -/1)(1 - gn) E Co(X X Y), and since
o:r;;./.,gn:r;;. 1,

Applying P and evaluating at x = XI' Y = Yn gives

12-a:~I:r;;.IlPIl·

So a:~ ~ 2 -IIPII. This completes the proof. I
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Remark. Theorems 7 and 8 generalize as follows. Let Xl, Xz, ..., X k be
infinite, compact, Hausdorff spaces. There exists no positive projection of
C(X 1 X Xl X ... X X k

) onto M = C(X 1
) + C(Xl ) + .. , + C(Xk

), and any
projection of C(X I X Xl X .. , X X k

) onto M is of norm at least 2k - 1. Let
xt E Xi, i = 1,..., k. Set Co(X' X ... X X k

) = {?: ? E C(X I X ... X X k
),

?(xt '00" xn = O} and M o = M n CO(X1 X ... X X k
). There is a unique

positive projection p* of CO(X I X ... X X k
) onto Mo' given by

(P*? )(x" ... , xk ) = ?(x" xi ,... , xn +... +?(xt ,xi ,..., xk ). For every pro­
jection P of Co(X' X ... X X k

) onto Mo' IIPII ~ /lP* II = k.
If Xi contains exactly mi points, i = 1,..., k, then every projection P of

C(X' X ... X X k
) onto M satisfies

IIPII ~ (2k - 1)

- (2k - 2) [~ Ilm i - ~. Ilmimj + ... + (-I)k- l lm,m 1 .. • mkl,
I '*J

and this lower bound is attained (see the remark after Theorem 7).
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Note added in proof Remark. Many results relating to positive projections are to be
found in Donner [5]. In particular, it follows as a special case of his Theorem 4.7 that a finite­
dimensional subspace L n of a Banach lattice L admits a positive projection if (and only if) it
(i) is a lattice in the induced ordering and (ii) any subset of L n that has an upper bound in L
has an upper bound in Ln' Our Theorem I provides a simple proof of this. One need only
establish that any positive linear functional on L n has a positive extension defined on L. This
is an immediate consequence of the Hahn-Banach theorem and the fact that there is a K such
that II(x+)Lnll~KII(x+)LII for all xELn, where (X+)E=SUPE(X,O). To prove this, assume
instead that there are elements xn with II(x:U~2-n and II(x:)Lnll >n. LetY=L~(x:)L
and A = 1x E L n: x ~Y }. Then A contains 0 and all xn' which leads to a contradiction of (ii).
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